Energy dissipation and dynamic response of an amplitude-modulation atomic-force microscopy subjected to a tip-sample viscous force.

نویسنده

  • Shueei Muh Lin
چکیده

In a common environment of atomic force microscopy (AFM), a damping force occurs between a tip and a sample. The influence of damping on the dynamic response of a cantilever must be significant. Moreover, accurate theory is very helpful for the interpretation of a sample's topography and properties. In this study, the effects of damping and nonlinear interatomic tip-sample forces on the dynamic response of an amplitude-formulation AFM are investigated. The damping force is simulated by using the conventional Kelvin-Voigt damping model. The interatomic tip-sample force is the attractive van der Waals force. For consistance with real measurement of a cantilever, the mathematical equations of the beam theory of an AM-AFM are built and its analytical solution is derived. Moreover, an AFM system is also simplified into a mass-spring-damper model. Its exact solution is simple and intuitive. Several relations among the damping ratio, the response ratio, the frequency shift, the energy dissipation and the Q-factor are revealed. It is found that the resonant frequencies and the phase angles determined by the two models are almost same. Significant differences in the resonant quality factors and the response ratios determined by using the two models are also found. Finally, the influences of the variations of several parameters on the error of measuring a sample's topography are investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adhesion hysteresis in Dynamic Atomic Force Microscopy Physica

The effects of adhesion hysteresis in the dynamic-dissipation curves measured in amplitude-modulation atomic force microscopy are discussed. Hysteresis in the interaction forces is shown to modify the dynamics of the cantilever leading to different power dissipation curves in the repulsive and attractive regimes. Experimental results together with numerical simulations show that power dissipati...

متن کامل

Sensitivity Analysis of Frequency Response of Atomic Force Microscopy in Liquid Environment on Cantilever's Geometrical Parameters

In this paper, the non-linear dynamic response of rectangular atomic force microscopy in tapping mode is considered. The effect of cantilever’s geometrical parameters (e.g., cantilever length, width, thickness, tip length and the angle between the cantilever and the sample's surface in liquid environment has been studied by taking into account the interaction forces. Results indicate that the r...

متن کامل

Analytical model of the nonlinear dynamics of cantilever tip-sample surface interactions for various acoustic atomic force microscopies

An analytical model is developed of the interaction of the cantilever tip of an atomic force microscope with the sample surface that treats the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. To maintain equilibrium, the volume element is subjected to a restoring force from the remainder of t...

متن کامل

Molecular scale energy dissipation in oligothiophene monolayers measured by dynamic force microscopy.

We perform a combined experimental and theoretical approach to establish the atomistic origin of energy dissipation occurring while imaging a molecular surface with an amplitude modulation atomic force microscope. We show that the energy transferred by a single nano-asperity to a sexithiophene monolayer is about 0.15 eV/cycle. The configuration space sampled by the tip depends on whether it app...

متن کامل

Accurate formulas for interaction force and energy in frequency modulation force spectroscopy

Frequency modulation atomic force microscopy utilizes the change in resonant frequency of a cantilever to detect variations in the interaction force between cantilever tip and sample. While a simple relation exists enabling the frequency shift to be determined for a given force law, the required complementary inverse relation does not exist for arbitrary oscillation amplitudes of the cantilever...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultramicroscopy

دوره 107 2-3  شماره 

صفحات  -

تاریخ انتشار 2007